Parity Models Erasure-Coded Resilience for Prediction Serving Systems

Jack Kosaian

Rashmi Vinayak

Shivaram Venkataraman

Rashmi Vinayak

Carnegie Mellon University

Shivaram Venkataraman

Inference used in latency-sensitive apps

Inference used in latency-sensitive apps

Inference used in latency-sensitive apps

Inference must operate with low, predictable latency

Frontend

Frontend

model instances

model instances

Storage systems

resource-efficient resilience

Storage systems

resource-efficient resilience

Communication systems

low-latency packet loss recovery

Storage systems

resource-efficient resilience

Communication systems

low-latency packet loss recovery

Erasure codes for systems that compute over data (e.g., serving systems)?

Erasure codes for resilient ML inference

This work: overcome fundamental challenges, use erasure codes for reducing tail latency in machine learning inference

Erasure codes for resilient ML inference

This work: overcome fundamental challenges, use erasure codes for reducing tail latency in machine learning inference

Bring benefits of erasure codes to inference

low recovery latency

more resource-efficient than replication

End goal: erasure-coded prediction serving

End goal: erasure-coded prediction serving

End goal: erasure-coded prediction serving

What does it mean to use erasure codes for ML inference?

Why is this hard?

Quick recap of erasure codes: parameter k

Quick recap of erasure codes: benefits

Erasure Coding

same resilience

lower resource-overhead

Traditional coding vs. codes for inference

Codes for storage

Codes for inference

Need to handle computation over inputs

Traditional coding vs. codes for inference

Designing erasure codes for inference is hard

Designing erasure codes for inference is hard

Theoretical framework: "coded-computation"

62

Designing erasure codes for inference is hard

Theoretical framework: "coded-computation"

Currently: handcraft erasure code

Designing erasure codes for inference is hard

Theoretical framework: "coded-computation"

Currently: handcraft erasure code

• Straight-forward for linear F

Designing erasure codes for inference is hard

Theoretical framework: "coded-computation"

Currently: handcraft erasure code

- Straight-forward for linear F
- Far more challenging for non-linear F
 - Apply to only restricted functions (polynomials)
 - Require 2x resource-overhead

Theoretical framework: "coded-computation"

Currently: handcraft erasure code

Current handcrafted coded-computation approaches cannot support neural networks

- Apply to only restricted functions (polynomials)
- Require 2x resource-overhead

F(P)

X

 $F(X_2)$

Xт

 $F(X_1)$

This work:

overcome challenges of handcrafting erasure codes for coded-computation by taking a **learning-based** approach to erasure-coded resilience

Learning an erasure code?

Design encoder and decoder as neural networks

Learning an erasure code?

Design encoder and decoder as neural networks

Learning an erasure code?

Design encoder and decoder as neural networks

Learn computation over parities

Learn computation over parities

Use simple, fast encoders and decoders Learn computation over parities: "parity model"

Learn computation over parities

Use simple, fast encoders and decoders Learn computation over parities: "parity model"

Learn computation over parities

Use simple, fast encoders and decoders Learn computation over parities: "parity model"

Learn computation over parities

Use simple, fast encoders and decoders Learn computation over parities: "parity model"

Learn computation over parities

Use simple, fast encoders and decoders Learn computation over parities: "parity model"

$$P = X_1 + X_2$$

Desired output: $F(X_1) + F(X_2)$

1. Sample inputs and encode

Desired output: $F(X_1) + F(X_2)$

1. Sample inputs and encode

Training a parity model: higher parameter k

Can specialize encoders and decoders to inference task at hand

Appropriate for machine learning inference

Appropriate for machine learning inference

1. Predictions resulting from inference are approximations

Appropriate for machine learning inference

- **1.** Predictions resulting from inference are approximations
- 2. Inaccuracy only at play when predictions otherwise slow/failed

Parity models in action in Clipper

Evaluation

1. How **accurate** are reconstructions using parity models?

2. By how much can parity models help reduce tail latency?

Tail latency reduction

Tail latency reduction

Extensive evaluation in paper

- Evaluate accuracy with different:
 - Different encoders
 - Inference tasks (image classification, object localization, speech)
 - Neural network architectures (ResNets, VGG, LeNet, MLP)
 - Code parameters (k = 3, k = 4)
- Evaluate tail latency with different:
 - Inference hardware (GPUs, CPUs)
 - Query arrival rates
 - Batch sizes
 - Levels of load imbalance
 - Amounts of redundancy
 - Baseline approaches

• Overcome challenges of handcrafting erasure codes for coded-computation through learning-based coded-resilience

- Overcome challenges of handcrafting erasure codes for coded-computation through learning-based coded-resilience
- Parity models: transform parities to enable decoding
 - Applicable to many inference tasks, neural networks
 - Reduce tail latency in presence of resource-contention

- Overcome challenges of handcrafting erasure codes for coded-computation through learning-based coded-resilience
- Parity models: transform parities to enable decoding
 - Applicable to many inference tasks, neural networks
 - Reduce tail latency in presence of resource-contention
- Bring benefits of erasure codes to ML inference

- Overcome challenges of handcrafting erasure codes for coded-computation through learning-based coded-resilience
- Parity models: transform parities to enable decoding
 - Applicable to many inference tasks, neural networks
 - Reduce tail latency in presence of resource-contention
- Bring benefits of erasure codes to ML inference

Project: pdl.cmu.edu/MLCodedComputation/
Code: github.com/Thesys-lab/parity-models

