
Parity Models
Erasure-Coded Resilience for 
Prediction Serving Systems

Jack Kosaian Rashmi Vinayak Shivaram Venkataraman



2

Rashmi Vinayak Shivaram Venkataraman



Inference: using a trained ML model

3



Inference: using a trained ML model

4



Inference: using a trained ML model

5

queries



Inference: using a trained ML model

6

queries predictions



Inference: using a trained ML model

7

queries predictions



Inference: using a trained ML model

8

queries predictions

cat
0.15 0.8 0.05

dog bird



Inference: using a trained ML model

9

queries predictions

cat
0.15 0.8 0.05

dog bird



Inference used in latency-sensitive apps

10



Inference used in latency-sensitive apps

11

translation ranking
search



Inference used in latency-sensitive apps

12

translation ranking
search

Inference must operate with low, 
predictable latency



Prediction serving systems: inference in clusters

13



Prediction serving systems: inference in clusters

Cloud Services

14

Open Source

Clipper TensorFlow
Serving



Prediction serving systems: inference in clusters

15



Prediction serving systems: inference in clusters

16

Frontend



Prediction serving systems: inference in clusters

17

Frontend

model
instances



Prediction serving systems: inference in clusters

18

Frontend

queries

model
instances



Prediction serving systems: inference in clusters

19

Frontend

queries

model
instances



Prediction serving systems: inference in clusters

20

Frontend

queries predictions

model
instances



Slowdowns and failures in inference

21

Frontend

queries predictions



Slowdowns and failures in inference

22

Frontend

network
contention

compute contention

queries predictions



Slowdowns and failures in inference

23

Frontend

network
contention

compute contention failures

queries predictions



Slowdowns and failures in inference

24

Frontend

network
contention

compute contention failures

queries predictions

Must alleviate effects of slowdowns 
and failures to reduce tail latency



Erasure codes widely deployed in systems

25



Erasure codes widely deployed in systems

26

Storage systems

D1 D2 P

resource-efficient resilience



Erasure codes widely deployed in systems

27

Storage systems

D1

Communication systems

D2 1 2 PP

resource-efficient resilience low-latency packet loss recovery



Erasure codes widely deployed in systems

28

Storage systems

D1

Communication systems

D2 1 2 PP

resource-efficient resilience low-latency packet loss recovery

Erasure codes for systems that compute 
over data (e.g., serving systems)?



Erasure codes for resilient ML inference

29

overcome fundamental challenges, use erasure codes 
for reducing tail latency in machine learning inference

This work:



Erasure codes for resilient ML inference

30

overcome fundamental challenges, use erasure codes 
for reducing tail latency in machine learning inference

This work:

more resource-efficient than replication
low recovery latency

Bring benefits of erasure codes to inference



End goal: erasure-coded prediction serving

31



End goal: erasure-coded prediction serving

32

Frontend

queries



End goal: erasure-coded prediction serving

33

Frontend

queries

Encoder



End goal: erasure-coded prediction serving

34

Frontend

queries

Encoder

parity query



End goal: erasure-coded prediction serving

35

Frontend

queries

Encoder

parity 
model

parity query



End goal: erasure-coded prediction serving

36

Frontend

queries

Encoder

parity 
model



End goal: erasure-coded prediction serving

37

Frontend

queries

Encoder

parity 
model



End goal: erasure-coded prediction serving

38

Frontend

queries

Encoder

parity 
model



End goal: erasure-coded prediction serving

39

Frontend

queries

Encoder Decoder

parity 
model



40

What does it mean to use erasure codes 
for ML inference?

Why is this hard?



41

Quick recap of erasure codes



42

Quick recap of erasure codes



43

D1

D1 D2

D2

Quick recap of erasure codes



44

D1 P

D1 D2 P = D1 + D2

D2

“parity”

Quick recap of erasure codes

encoding



45

D1 P

D1 D2 P = D1 + D2

D2

“parity”

Quick recap of erasure codes

encoding



46

D1 P

D1 D2 P = D1 + D2

D2 = P – D1

D2

“parity”

Quick recap of erasure codes

encoding

decoding



47

D1 P

D1 D2 P = D1 + D2 + … + Dk

D2

Quick recap of erasure codes: parameter k

Dk

Dk



48

D1 P

D1 D2 P = D1 + D2

D2

Erasure Coding

D1 D2 D2D1

D1 D2

Replication

Quick recap of erasure codes: benefits

lower resource-overhead
same resilience



49

Using erasure codes for inference



50

Using erasure codes for inference

F F F



51

Using erasure codes for inference

F F F models



52

Using erasure codes for inference

X1 X2

F F F models

queries



53

Using erasure codes for inference

X1 X2

F F F models

queries



54

Using erasure codes for inference

F(X1) F(X2)

X1 X2

F F F models

queries

predictions



55

Goal: preserve results of
inference over queries

Using erasure codes for inference

F(X1) F(X2)

X1 X2

F F F



Using erasure codes for inference

56

Encode queries

encode
“parity query”

F F F

F(X1) F(X2)

X1 X2



Using erasure codes for inference

57

Decode results of
inference over queries

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2



encode

Traditional coding vs. codes for inference

58

Need to handle computation over inputs

Codes for inferenceCodes for storage

D2D1

D1 D2

P

D2

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2

decode



encode

Traditional coding vs. codes for inference

59

Need to handle computation over inputs

Codes for inferenceCodes for storage

D2D1

D1 D2

P

D2

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2

decode

Encoding and decoding must hold 
over computation F



Designing erasure codes for inference is hard

60

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2



Designing erasure codes for inference is hard

61

Theoretical framework: “coded-computation”

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2



Designing erasure codes for inference is hard

62

Theoretical framework: “coded-computation”

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2
Currently: handcraft erasure code



Designing erasure codes for inference is hard

63

Theoretical framework: “coded-computation”

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2
Currently: handcraft erasure code

• Straight-forward for linear F



Designing erasure codes for inference is hard

64

Theoretical framework: “coded-computation”

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2
Currently: handcraft erasure code

• Straight-forward for linear F

• Far more challenging for non-linear F
‣ Apply to only restricted 

functions (polynomials)
‣ Require 2x resource-overhead



Designing erasure codes for inference is hard

65

Theoretical framework: “coded-computation”

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2
Currently: handcraft erasure code

• Straight-forward for linear F

• Far more challenging for non-linear F
‣ Apply to only restricted 

functions (polynomials)
‣ Require 2x resource-overhead

Current handcrafted coded-computation 
approaches cannot support neural networks



66

This work: 
overcome challenges of handcrafting 
erasure codes for coded-computation by 
taking a learning-based approach to 
erasure-coded resilience



Learning an erasure code?

67

Design encoder and decoder as neural networks

encoder
X1 X2

decoder



Learning an erasure code?

68

encoder
X1 X2

decoder

Accurate

Design encoder and decoder as neural networks



Learning an erasure code?

69

X1 X2

decoder

Accurate

Computationally
expensive

Expensive
encoder/decoder

encoder

Design encoder and decoder as neural networks



Learn computation over parities

70



Learn computation over parities
Use simple, fast encoders and decoders

71

Learn computation over parities: “parity model”



Learn computation over parities

72

P = X1 + X2X1 X2

F(X2) = FP(P) – F(X1)

Use simple, fast encoders and decoders
Learn computation over parities: “parity model”



Learn computation over parities

73

P = X1 + X2X1 X2

F(X2) = FP(P) – F(X1)

Use simple, fast encoders and decoders
Learn computation over parities: “parity model”



Learn computation over parities

74

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)

Use simple, fast encoders and decoders
Learn computation over parities: “parity model”



Accurate

Learn computation over parities

75

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)

Efficient
encoder/decoder

Use simple, fast encoders and decoders
Learn computation over parities: “parity model”



Designing parity models

76

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)



Designing parity models

77

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)

Goal: transform parities into a form that enables
decoder to reconstruct unavailable predictions



Designing parity models

78

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)

Goal: transform parities into a form that enables
decoder to reconstruct unavailable predictions



FP(P) = F(X1) + F(X2)

Designing parity models

79

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)

Goal: transform parities into a form that enables
decoder to reconstruct unavailable predictions



FP(P) = F(X1) + F(X2)

Designing parity models

80

P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1) Learn a parity model

Goal: transform parities into a form that enables
decoder to reconstruct unavailable predictions



Training a parity model

81

F(X1) + F(X2)

P = X1 + X2

Desired output:



Training a parity model

82

F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode

Desired output:

queries



Training a parity model

83

F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode

0.8 0.15 0.05

Desired output:

predictions

queries

0.2 0.7 0.1



Training a parity model

84

F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode
2. Perform inference with parity model

FP(P)1

0.8 0.15 0.05

Desired output:

predictions

queries

0.2 0.7 0.1



Training a parity model

85

F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss

FP(P)1

0.8 0.15 0.05

Desired output:

predictions

queries

compute loss

0.2 0.7 0.1



Training a parity model

86

F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss

FP(P)1

0.8 0.15 0.05

Desired output:

predictions

queries

compute loss

0.2 0.7 0.1



Training a parity model

87

F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss

FP(P)1

0.8 0.15 0.05

Desired output:

predictions

queries

compute loss

0.2 0.7 0.1

5. Repeat



Training a parity model

88

F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode

2. Perform inference with parity model

3. Compute loss

4. Backpropogate loss

FP(P)2

0.15 0.8 0.05

Desired output:

predictions

queries

compute loss

0.3 0.5 0.2

5. Repeat



Training a parity model

89

F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss

FP(P)3

0.03 0.02 0.95

Desired output:

predictions

queries

compute loss

0.3 0.3 0.4

5. Repeat



Training a parity model: higher parameter k

90

Can use higher 
code parameter k

F(X1) + F(X2) + F(X3) + F(X4)

P = X1 + X2 + X3 + X4

FP(P)1

Desired output:



Training a parity model: different encoders

91

P =

FP(P)1



Training a parity model: different encoders

92

P =

FP(P)1



Training a parity model: different encoders

93

P =

FP(P)1



Training a parity model: different encoders

94

Can specialize encoders and 
decoders to inference task at hand

P =

FP(P)1



95

Learning results in approximate reconstructions



Appropriate for machine learning inference

96

Learning results in approximate reconstructions



Appropriate for machine learning inference

97

1. Predictions resulting from inference are approximations

Learning results in approximate reconstructions



Appropriate for machine learning inference

98

1. Predictions resulting from inference are approximations

2. Inaccuracy only at play when predictions otherwise slow/failed

Learning results in approximate reconstructions



Parity models in action in Clipper

99

Frontend

queries

Encoder Decoder

parity 
model

parity query



Evaluation
1. How accurate are reconstructions using parity models?

100

2. By how much can parity models help reduce tail latency?



Accuracy of parity models

101



Accuracy of parity models

102



Accuracy of parity models

103

Reconstructed output only comes into play 
when original predictions are slow/failed



Accuracy of parity models

104

Reconstructed output only comes into play 
when original predictions are slow/failed

Example: assuming 10% slow predictions à
at most 0.7% lower overall accuracy



Tail latency reduction

105

In presence of resource contention



Tail latency reduction

106

In presence of resource contention

40%

same 
median



Extensive evaluation in paper
• Evaluate accuracy with different:

‣ Different encoders
‣ Inference tasks (image classification, object localization, speech)
‣ Neural network architectures (ResNets, VGG, LeNet, MLP)
‣ Code parameters (k = 3, k = 4)

• Evaluate tail latency with different:
‣ Inference hardware (GPUs, CPUs)
‣ Query arrival rates
‣ Batch sizes
‣ Levels of load imbalance
‣ Amounts of redundancy
‣ Baseline approaches

107



Parity models summary

108



Parity models summary

109

• Overcome challenges of handcrafting erasure codes for 
coded-computation through learning-based coded-resilience



Parity models summary

110

• Overcome challenges of handcrafting erasure codes for 
coded-computation through learning-based coded-resilience

• Parity models: transform parities to enable decoding
• Applicable to many inference tasks, neural networks
• Reduce tail latency in presence of resource-contention



Parity models summary

111

• Overcome challenges of handcrafting erasure codes for 
coded-computation through learning-based coded-resilience

• Parity models: transform parities to enable decoding
• Applicable to many inference tasks, neural networks
• Reduce tail latency in presence of resource-contention

• Bring benefits of erasure codes to ML inference



Parity models summary

112

Code: github.com/Thesys-lab/parity-models
Project: pdl.cmu.edu/MLCodedComputation/

• Overcome challenges of handcrafting erasure codes for 
coded-computation through learning-based coded-resilience

• Parity models: transform parities to enable decoding
• Applicable to many inference tasks, neural networks
• Reduce tail latency in presence of resource-contention

• Bring benefits of erasure codes to ML inference

https://github.com/Thesys-lab/parity-models
https://www.pdl.cmu.edu/MLCodedComputation/

