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translation ranking
search

Inference must operate with low, 
predictable latency
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Frontend

network
contention

compute contention failures

queries predictions

Must alleviate effects of slowdowns 
and failures to reduce tail latency
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Storage systems

D1

Communication systems

D2 1 2 PP

resource-efficient resilience low-latency packet loss recovery

Erasure codes for systems that compute 
over data (e.g., serving systems)?
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overcome fundamental challenges, use erasure codes 
for reducing tail latency in machine learning inference

This work:

more resource-efficient than replication
low recovery latency

Bring benefits of erasure codes to inference
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What does it mean to use erasure codes 
for ML inference?

Why is this hard?
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D1 P

D1 D2 P = D1 + D2

D2

Erasure Coding

D1 D2 D2D1

D1 D2

Replication

Quick recap of erasure codes: benefits

lower resource-overhead
same resilience
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Goal: preserve results of
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Need to handle computation over inputs

Codes for inferenceCodes for storage

D2D1

D1 D2

P

D2

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2

decode

Encoding and decoding must hold 
over computation F
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Theoretical framework: “coded-computation”

decode

F(X2)

F(X1) F(P)

encode

F F F

X1 X2
Currently: handcraft erasure code

• Straight-forward for linear F

• Far more challenging for non-linear F
‣ Apply to only restricted 

functions (polynomials)
‣ Require 2x resource-overhead

Current handcrafted coded-computation 
approaches cannot support neural networks
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This work: 
overcome challenges of handcrafting 
erasure codes for coded-computation by 
taking a learning-based approach to 
erasure-coded resilience
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X1 X2

decoder

Accurate

Computationally
expensive

Expensive
encoder/decoder

encoder

Design encoder and decoder as neural networks
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P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1)

Efficient
encoder/decoder

Use simple, fast encoders and decoders
Learn computation over parities: “parity model”
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P = X1 + X2X1 X2

parity model 
(FP)

F(X2) = FP(P) – F(X1) Learn a parity model

Goal: transform parities into a form that enables
decoder to reconstruct unavailable predictions
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F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode

2. Perform inference with parity model

3. Compute loss

4. Backpropogate loss

FP(P)2

0.15 0.8 0.05

Desired output:

predictions

queries

compute loss

0.3 0.5 0.2

5. Repeat
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F(X1) + F(X2)

P = X1 + X2

1. Sample inputs and encode
2. Perform inference with parity model
3. Compute loss
4. Backpropogate loss

FP(P)3

0.03 0.02 0.95

Desired output:

predictions

queries

compute loss

0.3 0.3 0.4

5. Repeat
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Can use higher 
code parameter k

F(X1) + F(X2) + F(X3) + F(X4)

P = X1 + X2 + X3 + X4

FP(P)1

Desired output:
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Can specialize encoders and 
decoders to inference task at hand

P =

FP(P)1
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1. Predictions resulting from inference are approximations

2. Inaccuracy only at play when predictions otherwise slow/failed

Learning results in approximate reconstructions
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Frontend

queries

Encoder Decoder

parity 
model

parity query



Evaluation
1. How accurate are reconstructions using parity models?
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2. By how much can parity models help reduce tail latency?
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Reconstructed output only comes into play 
when original predictions are slow/failed

Example: assuming 10% slow predictions à
at most 0.7% lower overall accuracy
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In presence of resource contention

40%

same 
median



Extensive evaluation in paper
• Evaluate accuracy with different:

‣ Different encoders
‣ Inference tasks (image classification, object localization, speech)
‣ Neural network architectures (ResNets, VGG, LeNet, MLP)
‣ Code parameters (k = 3, k = 4)

• Evaluate tail latency with different:
‣ Inference hardware (GPUs, CPUs)
‣ Query arrival rates
‣ Batch sizes
‣ Levels of load imbalance
‣ Amounts of redundancy
‣ Baseline approaches
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• Overcome challenges of handcrafting erasure codes for 
coded-computation through learning-based coded-resilience

• Parity models: transform parities to enable decoding
• Applicable to many inference tasks, neural networks
• Reduce tail latency in presence of resource-contention

• Bring benefits of erasure codes to ML inference
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Code: github.com/Thesys-lab/parity-models
Project: pdl.cmu.edu/MLCodedComputation/

• Overcome challenges of handcrafting erasure codes for 
coded-computation through learning-based coded-resilience

• Parity models: transform parities to enable decoding
• Applicable to many inference tasks, neural networks
• Reduce tail latency in presence of resource-contention

• Bring benefits of erasure codes to ML inference

https://github.com/Thesys-lab/parity-models
https://www.pdl.cmu.edu/MLCodedComputation/

