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Efficiently detect silent data corruption in 
neural network inference by exploiting 
trends in neural network design and GPUs



Many ML systems demand high reliability
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Soft errors threaten reliability

• Soft error: transient hardware error causing incorrect execution
• Incorrect execution (i.e., silent data corruption): e.g., 1 + 1 = 3

• Transient: may occur one cycle, but may not occur in next

• Many causes:
• Cosmic-radiation-induced particle strikes

• Aggressive voltage scaling

• Hardware wear out

• Affect both memory and processing elements

• Rate off occurrence depends on setting
• Infrequent terrestrially (though uptick noted recently in datacenters)

• Rate increases with altitude, even more prevalent in space
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1. Safety-critical systems
• Li et al., 2017: can cause misprediction 

rate that violates automotive safety 
standards (ISO 26262)

2. Environments with high error rates
• Soft error rate increases with altitude

• Even higher when operating in outer space

When do soft errors matter for neural networks?
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Sphere of focus for this talk

Detecting faults in processing logic in NN inference on GPUs

• Detecting faults: rare events, can fail over to reliable backup
• Specifically, we focus on detecting a single fault occurring

• Faults in processing logic:
• Memory faults are easier to handle via hardware protection (e.g., ECC)

• Processing logic is less amenable to lightweight hardware protection

• Goal: minimize execution-time overhead
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Algorithm-based fault tolerance (ABFT)

ABFT: add redundant computation carefully formed to introduce 
invariants into algorithm that can be used for fault tolerance

→ Less overhead than replication-based approaches
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Algorithm-based fault tolerance (ABFT)

Example: detect faults in 𝐹 𝑥 = 2𝑥

8

𝑥1

𝑥2

𝐹

𝐹

2𝑥1

2𝑥2

𝑥𝐶 = (𝑥1 + 𝑥2) 𝐹 2𝑥𝐶 =

2𝑥1 + 2𝑥2

2(𝑥1+𝑥2)

compare

Requires only one additional invocation of 𝑭

“encoding”



Algorithm-based fault tolerance (ABFT)

Example: detect faults in 𝐹( Ԧ𝑥) = 𝐴 Ԧ𝑥
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ABFT has been widely studied 

• Traditional HPC applications
• Linear algebra

• Iterative methods

• Sorting

• Neural networks
• On GPUs (Hari et al., 2020)

• On CPUs (Zhao et al., 2020; Li et al., 2021)

• In hardware (Ozen et al., 2019)
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ABFT for neural networks

• Problem: ABFT not widely applicable to non-linear operations

• Neural networks contain:
• Linear layers (e.g., convolutions, fully-connected layers)

• Non-linear layers (e.g., ReLUs, max pooling)
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ABFT for neural networks

• Approach commonly used in prior work:
• ABFT over linear layers

• Replicate non-linear layers (which are cheap to begin with)
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ABFT for neural networks

• Approach commonly used in prior work:
• ABFT over linear layers

• Replicate non-linear layers (which are cheap to begin with)

• Our focus: efficient ABFT for lin. layers (matrix multiplications)
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ABFT for matrix multiplication
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ABFT for matrix multiplication
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ABFT for linear layers in neural networks

16

input 

activations

layer 

weights

layer 

outputs
M MK

K N N

column checksum

row checksum



ABFT for linear layers in NNs

“Global ABFT”

• Approach used by prior work

• Generates checksums over 
entire matrices

• Minimizes redundant 
computation performed in 
checksum dot products

17

Is global ABFT efficient for all linear layers on GPUs?



What is needed for efficient error detection?

Goal: minimize execution-time overhead of error detection

• Must understand resource bottlenecks to reduce overhead
• Compute-bound: minimize additional operations performed

• Memory-bandwidth-bound: minimize additional loads/stores
• Compute units underutilized → opportunities for fine-grained redundancy 
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Our contributions

• Analyze trends in NN design and GPU hardware

• Make a case for prevalence of bandwidth-bound linear layers
• Opens opportunities for efficient fault detection that prior ABFT can’t exploit

• Investigate approaches to ABFT suitable for bandwidth-bound layers

• Develop arithmetic-intensity-guided ABFT
• Adaptive approach that selects most efficient ABFT scheme for each layer
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Determining whether compute or bandwidth bound
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Comparing intensity and CMR for neural networks on GPUs
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Comparing intensity and CMR for neural networks on GPUs
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Comparing intensity and CMR for neural networks on GPUs
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Comparing intensity and CMR for neural networks on GPUs
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Comparing intensity and CMR for neural networks on GPUs
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CMR: compute-to-
memory-bandwidth ratio

vs.

• Variable across:

• Neural networks as a whole

• Layers within a single network

• Deployment scenarios

• Trends in neural architecture 
design decrease intensity

• Increasing with inference-
optimized GPUs

• Tensor Cores cause large 
increase in compute bandwidth

• Memory bandwidth has not 
increased as rapidly

Implication: neural network inference is likely to contain both compute-
bound and memory-bandwidth-bound layers.

Any one-size-fits all approach to fault detection will be inefficient.



Our approach: arithmetic-intensity-guided ABFT

Key idea: adapt the type of fault detection used depending on 
bottleneck of layer

• Compute-bound layers: global ABFT

• Bandwidth-bound layers: ???

• We investigate and propose:
• Thread-level ABFT: approach to ABFT for bandwidth-bound layers

• Arithmetic-intensity-guided ABFT: adaptive approach to ABFT that selects 
between global and thread-level ABFT
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Fault detection for bandwidth-bound layers

Design principle: avoid additional memory accesses whenever 
possible, even at the expense of additional computation

• Avoids competing with original layer for bottleneck resource: bandwidth

• Global ABFT requires additional loads/stores for inter-thread communication

Opportunity: compute units will stall in bandwidth-bound layers
• Ideal approach will fill these stalls with fault detection
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• Thread-level ABFT:
• Each GPU thread performs thread-local 

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers
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• Thread-level ABFT:
• Each GPU thread performs thread-local 

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers
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ABFT for bandwidth-bound linear layers
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ABFT for bandwidth-bound linear layers
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ABFT for bandwidth-bound linear layers
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ABFT for bandwidth-bound linear layers
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ABFT for bandwidth-bound linear layers
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ABFT for bandwidth-bound linear layers
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• Thread-level ABFT:
• Each GPU thread performs thread-local 

ABFT alongside original mat. mult.

• Avoids additional loads/stores

• Adds more redundant operations, but
exploits compute stalls in mat. mult.

ABFT for bandwidth-bound linear layers
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Further exploiting underutilized computational bandwidth
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Arithmetic-intensity-guided ABFT

Key idea: adapt the type of fault detection used depending on 
bottleneck of layer

• Compute-bound layers: global ABFT

• Bandwidth-bound layers: thread-level ABFT

• Before deployment, for each linear layer:
• Select fastest among global ABFT and thread-level ABFT

• Choice typically aligns with intensity of layer and CMR of GPU

• More design decisions in the paper
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Evaluation setup

• Implemented in NVIDIA CUTLASS linear algebra library

• Run on T4 GPU, using Tensor Cores (FP16)

• Variety of neural network workloads
• Popular CNNs

• CNNs developed through model specialization

• NNs in recommendation models (DLRMs)

• Detailed evaluation in paper:
• Various batch sizes

• Various image resolutions

• Evaluation of design decisions in thread-level ABFT
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Results: high-intensity neural networks
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Results: high-intensity neural networks
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Results: low-intensity neural networks
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Summary of arithmetic-intensity-guided ABFT

• Analyze trends in neural network design and GPU hardware

• Made case for prevalence of bandwidth-bound linear layers
• Prior approaches to ABFT are not well suited for these

• Propose arithmetic-intensity-guided ABFT:
• Investigate approaches to ABFT for bandwidth-bound layers

• Tailor the ABFT scheme used to the intensity of the layer, CMR of GPU

• Enables 1.1x – 5.3x reduction in execution-time overhead

Code: github.com/thesys-lab/arithmetic-intensity-guided-abft

Contact: jkosaian@cs.cmu.edu, rvinayak@cs.cmu.edu
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