e eC21

St.Louis, | science
MO |& beyond.

Arithmetic-Intensity-Guided Fault Tolerance
for Neural Network Inference on GPUs .
. B o Uriversity VP X

Rashmi Vinayak Carnegie Mellon University e

Contact: jkosaian@cs.cmu.edu, rvinayak@cs.cmu.edu

Efficiently detect silent data corruption in
neural network inference by exploiting
trends In neural network design and GPUSs

Many ML systems demand high reliability

& % |

Autonomous edge Financial
systems systems

4 ©

Scientific Cybersecurity
discovery

Soft errors threaten reliabllity

« Soft error: transient hardware error causing incorrect execution
* Incorrect execution (i.e., silent data corruption). e.g., 1 +1=3
« Transient: may occur one cycle, but may not occur in next

 Many causes: Y4
« Cosmic-radiation-induced particle strikes 1 —|
« Aggressive voltage scaling AND 0
« Hardware wear out 1—

 Affect both memory and processing elements

« Rate off occurrence depends on setting
* Infrequent terrestrially (though uptick noted recently in datacenters)
« Rate increases with altitude, even more prevalent in space

When do soft errors matter for neural networks?

1. Safety-critical systems

e Lietal.,, 2017: can cause misprediction ‘
rate that violates automotive safety
standards (ISO 26262)

2. Environments with high error rates
« Soft error rate increases with altitude
« Even higher when operating in outer space

Sphere of focus for this talk

Detecting faults in processing logic in NN inference on GPUs

» Detecting faults: rare events, can fail over to reliable backup
« Specifically, we focus on detecting a single fault occurring

 Faults in processing logic:
 Memory faults are easier to handle via hardware protection (e.g., ECC)
* Processing logic is less amenable to lightweight hardware protection

« Goal: minimize execution-time overhead

Algorithm-based fault tolerance (ABFT)

ABFT:. add redundant computation carefully formed to introduce
Invariants into algorithm that can be used for fault tolerance

- Less overhead than replication-based approaches

Algorithm-based fault tolerance (ABFT)

Example: detect faults in F (x) = 2x

X1 — | —> le Y
le T ZXZ
952 — F — 2x2 ¢§)‘mpare

xXc = (x1

XZ)_> F_>2xC — 2(X1+X2)

“encoding”

Requires only one additional invocation of F

Algorithm-based fault tolerance (ABFT)

Example: detect faults in F (X) = AX

X, —> F— A%;

2 —_— Ax_l) By Ax_Z)
xz — F — sz ﬁcompare
Xc = (X + %) > F—>Axc = A(X{ + ;)

“encoding”
Applies to any linear function F

Non-linear functions are harder to support

ABFT has been widely studied

 Traditional HPC applications
 Linear algebra
* |terative methods
 Sorting

* Neural networks
 On GPUs (Hari et al., 2020)
 On CPUs (Zhao et al., 2020; Li et al., 2021)
* In hardware (Ozen et al., 2019)

10

ABFT for neural networks

* Problem: ABFT not widely applicable to non-linear operations

* Neural networks contain:
 Linear layers (e.g., convolutions, fully-connected layers)
* Non-linear layers (e.g., ReLUs, max pooling)

B

-@-@-

11

ABFT for neural networks

* Approach commonly used in prior work:
 ABFT over linear layers
* Replicate non-linear layers (which are cheap to begin with)

12

ABFT for neural networks

* Approach commonly used in prior work:
 ABFT over linear layers
* Replicate non-linear layers (which are cheap to begin with)

« Our focus: efficient ABFT for lin. layers (matrix multiplications)

13

ABFT for matrix multiplication

aq

ay

dg

Ay

a,+a,|a,+a,

column

checksum

b, b, b, + b, __
b, b, +b,| T
row
checksum

C

a,b, + a,b,

a,;b, + a,b,

asb, + a,b,

asb, + a,b,

14

ABFT for matrix multiplication

C

a, a, x b, b, __ a,b, + a,b; | a;b, + a,b,
a, a, b, | b, | T asb, + a,b, | ash, + a,b,
\ sum /
+ + b. +b —— —
7% 1% " % x — == (a,tag)(b;+bhy) + (a,ta,)(bst+b,)
column b; + b,
checksum row

checksum

15

ABFT for linear layers in neural networks

K N N

< > < > < >

\ |_npgt % K Ia_yer layer
activations weights outputs

v v v
row checksum

column checksum

16

ABFT for linear layers in NNs

K N

“Global ABFT”

) ' I
- Approach used by prior work M | aotvatons| X K|| wents
 Generates checksums over

entire matrices K
« Minimizes redundant e X K[| roweneckaum
computation performed In L

checksum dot products

N

layer
outputs

Is global ABFT efficient for all linear layers on GPUs?

17

What Is needed for efficient error detection?

Goal: minimize execution-time overhead of error detection

» Must understand resource bottlenecks to reduce overhead
« Compute-bound: minimize additional operations performed

« Memory-bandwidth-bound: minimize additional loads/stores
« Compute units underutilized = opportunities for fine-grained redundancy

18

Our contributions

* Analyze trends in NN design and GPU hardware

» Make a case for prevalence of bandwidth-bound linear layers
* Opens opportunities for efficient fault detection that prior ABFT can’t exploit

* Investigate approaches to ABFT suitable for bandwidth-bound layers

* Develop arithmetic-intensity-guided ABFT
« Adaptive approach that selects most efficient ABFT scheme for each layer

19

Determining whether compute or bandwidth bound

To be compute bound:

FLOPs S FLOPs/sec
Bytes Bytes/sec
arithmetic CMR: compute-to-

) i > . .
Intensity memory-bandwidth ratio

20

Comparing intensity and CMR for neural networks on GPUs

arithmetic CMR: compute-to-
Intensity ' memory-bandwidth ratio

21

Comparing intensity and CMR for neural networks on GPUs

arithmetic
Intensity

 Variable across:
* Neural networks as a whole
 Layers within a single network
» Deployment scenarios

FLOPs
Bytes

FP16 290
intensity 108 . . . I

et \\\ \ e’\ '\6 net
e V\ 6‘5

arithmetic intensity =

600
FP16 ‘ ““““h
intensity 400

Linear layers of Resnet-50

Higher resolution Larger batch size
- higher Al - higher Al

Comparing intensity and CMR for neural networks on GPUs

arithmetic
Intensity

 Variable across:
* Neural networks as a whole
 Layers within a single network
» Deployment scenarios

* Trends in neural architecture
design reduce intensity

Large DNNSs: Small DNNs:
High intensity Low intensity

Techniques that improve throughput/latency,
but reduce arithmetic intensity:

- Pruning
- Model specialization
- Model scaling (e.g., EfficientNets)

Comparing intensity and CMR for neural networks on GPUs

CMR: compute-to-
4 cvR = FLOPs/sec memory-bandwidth ratio

Bytes/sec f * Increasing with inference-
optimized GPUs

» Tensor Cores cause large
Server-grade Increase in compute bandwidth

GPUs « Memory bandwidth has not
Increased as rapidly

Edge GPUs

24

Comparing intensity and CMR for neural networks on GPUs

arithmetic CMR: compute-to-
Intensity ' memory-bandwidth ratio

 Variable across: * Increasing with inference-

* Neural networks as a whole optimized GPUs
 Layers within a single network « Tensor Cores cause large
. Deployment scenarios iIncrease in compute bandwidth
. Trends | | hitect « Memory bandwidth has not
renas in hedral architecture Increased as rapidly
design decrease intensity

Implication: neural network inference is likely to contain both compute- A
bound and memory-bandwidth-bound layers.

. Any one-size-fits all approach to fault detection will be inefficient.

25

Our approach: arithmetic-intensity-guided ABFT

Key idea: adapt the type of fault detection used depending on
bottleneck of layer

« Compute-bound layers: global ABFT
« Bandwidth-bound layers: ???

* We Iinvestigate and propose:
e Thread-level ABFT: approach to ABFT for bandwidth-bound layers

« Arithmetic-intensity-guided ABFT: adaptive approach to ABFT that selects
between global and thread-level ABFT

26

Fault detection for bandwidth-bound layers

Design principle: avoid additional memory accesses whenever
possible, even at the expense of additional computation

« Avoids competing with original layer for bottleneck resource: bandwidth

* Global ABFT requires additional loads/stores for inter-thread communication

K A Et’
« L1 B K
¢ . K By K K
] — K B.
M || —> <K
A cl - M Al cf My Al my A

Kernel level Threadblock level Warp level Thread level

Opportunity: compute units will stall in bandwidth-bound layers
* |deal approach will fill these stalls with fault detection

27

ABFT for bandwidth-bound linear layers

4 NG)

-
Kl Thread
K matrix
MY A B
\ Thread level)

* Thread-level ABFT: ——

rea

« Each GPU thread performs thread-local Thread —
ABFT alongside original mat. mult. matrix A C

ABFT for bandwidth-bound linear layers

(" N) outer <
l product
K
< A

—p

M3 AJ [C]

\ Thread level)

 Thread-level ABFT:

« Each GPU thread performs thread-local
ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

4 NG)
N ter
ou
¢
K Kl product
—p
MY Al 4

\ Thread level)

 Thread-level ABFT:

« Each GPU thread performs thread-local
ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

4 NG)
>
Kl outer
K —
My A product
_ Thread level A

 Thread-level ABFT:

« Each GPU thread performs thread-local
ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

row

checksum
(" N) outer (i
+< product sum
« A
—p
My AJ [C

k Thread level)

 Thread-level ABFT: =

« Each GPU thread performs thread-local
ABFT alongside original mat. mult.

sum

— E=mx]
column

checksum

32

ABFT for bandwidth-bound linear layers

r

N

«>
Kl
K

—
MY A
k Thread level)

~N

 Thread-level ABFT:

« Each GPU thread performs thread-local

ABFT alongside original mat. mult.

row
checksum

outer

pl’OdUCt sum
A

sum

B+=M x i
columN

checksum

33

ABFT for bandwidth-bound linear layers

r

N

«>
Kl
K

—
MY A
k Thread level)

~N

 Thread-level ABFT:

« Each GPU thread performs thread-local

ABFT alongside original mat. mult.

row
checksum

outer

product sum
A

sum

B+=M x i
columN

checksum

34

ABFT for bandwidth-bound linear layers

r)
>
Kl
—K
mg— Al

\ Thread level)

* Thread-level ABFT: (~

« Each GPU thread performs thread-local
ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

row
4 N)
<> ¢ checksum
Kl outer
K product sum
MY A A

\ Thread level)

 Thread-level ABFT:

« Each GPU thread performs thread-local
ABFT alongside original mat. mult.

« Avoids additional loads/stores sum
« Adds more redundant operations, but u v

. | o
exploits compute stalls in mat. mult. ColumN_/'- X

checksum

36

Further exploiting underutilized computational bandwidth

Two-Sided Thread-Level ABFT One-Sided Thread-Level ABFT
N, row c N; S row
checksum checksum
—»[] —»[]
sum sum

]]
“

\IJri'lxi I+:EXi
column

checksum

37

Arithmetic-intensity-guided ABFT

Key idea: adapt the type of fault detection used depending on
bottleneck of layer

« Compute-bound layers: global ABFT

« Bandwidth-bound layers: thread-level ABFT

» Before deployment, for each linear layer:
» Select fastest among global ABFT and thread-level ABFT
« Choice typically aligns with intensity of layer and CMR of GPU

« More design decisions in the paper

38

Evaluation setup

* Implemented in NVIDIA CUTLASS linear algebra library
 Run on T4 GPU, using Tensor Cores (FP16)

» Variety of neural network workloads
* Popular CNNs
 CNNs developed through model specialization
* NNs in recommendation models (DLRMS)

 Detalled evaluation in paper:
 Various batch sizes
« Various image resolutions
« Evaluation of design decisions in thread-level ABFT

39

Results: high-intensity neural networks

Time overhead (%)

I Global ABFT [Arithmetic-Intensity-Guided ABFT

Y
N

—
o

co

SqueezeNet ShuffleNet DenseNet ResNet-50 AlexNet VGG-16 ResNext-50 WideResnet
(71.1) (76.6) (79.0) (122.0) (125.5) (155.5) (220.8) (220.8)
Model
(intensity)

increasing intensity —»

40

Results: high-intensity neural networks

Time overhead (%)

—_
Mo

—_
o

co

I Global ABFT [Arithmetic-Intensity-Guided ABFT

1.1x — 2.8x reduction in overhead

1

SqueezeNet ShuffleNet DenseNet ResNet-50 AlexNet VGG-16 ResNext-50 WideResnet
(71.1) (76.6) (79.0) (122.0) (125.5) (155.5) (220.8) (220.8)
Model
(intensity)

increasing intensity ————» 41

Results: low-intensity neural networks

I Global ABFT

-3 - M [\®]
o 4] o (9]

Time overhead (%)

(&)

0 MLP-Bottom MLP-Top
(7.4) (7.7)
Model
(intensity)

Recommendation models
3.2x — 4.6x speedup

[_1 Arithmetic-Intensity-Guided ABFT
17.5-

15.0 -
12.5 -
10.0 -

7.9

Time overhead (%)

5.0
2.5

0.0-

Coral Roundabout Taipel Amsterdam
(15.1) (37.9) (51.9) (52.7)
Model
(intensity)

Specialized CNNs
1.6x — 5.3x speedup

42

Summary of arithmetic-intensity-guided ABFT

* Analyze trends in neural network design and GPU hardware

« Made case for prevalence of bandwidth-bound linear layers
 Prior approaches to ABFT are not well suited for these

* Propose arithmetic-intensity-guided ABFT:
* |Investigate approaches to ABFT for bandwidth-bound layers
« Tailor the ABFT scheme used to the intensity of the layer, CMR of GPU
* Enables 1.1x — 5.3x reduction in execution-time overhead

Code: github.com/thesys-lab/arithmetic-intensity-guided-abft
Contact: jkosalan@cs.cmu.edu, rvinayak@cs.cmu.edu

43

