
Arithmetic-Intensity-Guided Fault Tolerance
for Neural Network Inference on GPUs
Jack Kosaian Carnegie Mellon University
Rashmi Vinayak Carnegie Mellon University

Contact: jkosaian@cs.cmu.edu, rvinayak@cs.cmu.edu

2

Efficiently detect silent data corruption in
neural network inference by exploiting
trends in neural network design and GPUs

Many ML systems demand high reliability

3

Autonomous edge

systems

Scientific

discovery

Financial

systems

Cybersecurity

Soft errors threaten reliability

• Soft error: transient hardware error causing incorrect execution
• Incorrect execution (i.e., silent data corruption): e.g., 1 + 1 = 3

• Transient: may occur one cycle, but may not occur in next

• Many causes:
• Cosmic-radiation-induced particle strikes

• Aggressive voltage scaling

• Hardware wear out

• Affect both memory and processing elements

• Rate off occurrence depends on setting
• Infrequent terrestrially (though uptick noted recently in datacenters)

• Rate increases with altitude, even more prevalent in space

4

AND
1

1
1

0

1. Safety-critical systems
• Li et al., 2017: can cause misprediction

rate that violates automotive safety
standards (ISO 26262)

2. Environments with high error rates
• Soft error rate increases with altitude

• Even higher when operating in outer space

When do soft errors matter for neural networks?

5

red

light
green

light

Sphere of focus for this talk

Detecting faults in processing logic in NN inference on GPUs

• Detecting faults: rare events, can fail over to reliable backup
• Specifically, we focus on detecting a single fault occurring

• Faults in processing logic:
• Memory faults are easier to handle via hardware protection (e.g., ECC)

• Processing logic is less amenable to lightweight hardware protection

• Goal: minimize execution-time overhead

6

Algorithm-based fault tolerance (ABFT)

ABFT: add redundant computation carefully formed to introduce
invariants into algorithm that can be used for fault tolerance

→ Less overhead than replication-based approaches

7

Algorithm-based fault tolerance (ABFT)

Example: detect faults in 𝐹 𝑥 = 2𝑥

8

𝑥1

𝑥2

𝐹

𝐹

2𝑥1

2𝑥2

𝑥𝐶 = (𝑥1 + 𝑥2) 𝐹 2𝑥𝐶 =

2𝑥1 + 2𝑥2

2(𝑥1+𝑥2)

compare

Requires only one additional invocation of 𝑭

“encoding”

Algorithm-based fault tolerance (ABFT)

Example: detect faults in 𝐹(Ԧ𝑥) = 𝐴 Ԧ𝑥

9

𝑥1

𝑥2

𝐹

𝐹

𝐴𝑥1

𝐴𝑥2

𝑥𝐶 = (𝑥1 + 𝑥2) 𝐹 𝐴𝑥𝐶 =

𝐴𝑥1 + 𝐴𝑥2

𝐴(𝑥1 + 𝑥2)

Applies to any linear function 𝑭

compare

“encoding”

Non-linear functions are harder to support

ABFT has been widely studied

• Traditional HPC applications
• Linear algebra

• Iterative methods

• Sorting

• Neural networks
• On GPUs (Hari et al., 2020)

• On CPUs (Zhao et al., 2020; Li et al., 2021)

• In hardware (Ozen et al., 2019)

10

ABFT for neural networks

• Problem: ABFT not widely applicable to non-linear operations

• Neural networks contain:
• Linear layers (e.g., convolutions, fully-connected layers)

• Non-linear layers (e.g., ReLUs, max pooling)

11

ReLUConv1 ReLUInput Conv2

ABFT for neural networks

• Approach commonly used in prior work:
• ABFT over linear layers

• Replicate non-linear layers (which are cheap to begin with)

12

ReLU

Conv1

ReLU

Input Conv2

ReLU

ReLU

ABFT for neural networks

• Approach commonly used in prior work:
• ABFT over linear layers

• Replicate non-linear layers (which are cheap to begin with)

• Our focus: efficient ABFT for lin. layers (matrix multiplications)

13

ReLU

Conv1

ReLU

Input Conv2

ReLU

ReLU

ABFT for matrix multiplication

14

a1 a2

a3 a4

a1b1 + a2b3 a1b2 + a2b4

a3b1 + a4b3 a3b2 + a4b4

b1 b2

b3 b4

a1 + a3 a2 + a4

b1 + b2

b3 + b4

column

checksum

row

checksum

A B C

ABFT for matrix multiplication

15

a1 a2

a3 a4

a1b1 + a2b3 a1b2 + a2b4

a3b1 + a4b3 a3b2 + a4b4

b1 b2

b3 b4

a1 + a3 a2 + a4 b1 + b2

b3 + b4

(a1+a3)(b1+b2) + (a2+a4)(b3+b4)
column

checksum row

checksum

sum

A B C

ABFT for linear layers in neural networks

16

input

activations

layer

weights

layer

outputs
M MK

K N N

column checksum

row checksum

ABFT for linear layers in NNs

“Global ABFT”

• Approach used by prior work

• Generates checksums over
entire matrices

• Minimizes redundant
computation performed in
checksum dot products

17

Is global ABFT efficient for all linear layers on GPUs?

What is needed for efficient error detection?

Goal: minimize execution-time overhead of error detection

• Must understand resource bottlenecks to reduce overhead
• Compute-bound: minimize additional operations performed

• Memory-bandwidth-bound: minimize additional loads/stores
• Compute units underutilized → opportunities for fine-grained redundancy

18

Our contributions

• Analyze trends in NN design and GPU hardware

• Make a case for prevalence of bandwidth-bound linear layers
• Opens opportunities for efficient fault detection that prior ABFT can’t exploit

• Investigate approaches to ABFT suitable for bandwidth-bound layers

• Develop arithmetic-intensity-guided ABFT
• Adaptive approach that selects most efficient ABFT scheme for each layer

19

Determining whether compute or bandwidth bound

20

arithmetic
intensity

FLOPs/sec
Bytes/sec

FLOPs
Bytes

>

>

To be compute bound:

CMR: compute-to-
memory-bandwidth ratio

Comparing intensity and CMR for neural networks on GPUs

21

arithmetic
intensity

CMR: compute-to-
memory-bandwidth ratio

vs.

Comparing intensity and CMR for neural networks on GPUs

22

arithmetic
intensity

CMR: compute-to-
memory-bandwidth ratio

vs.vs. FLOPs

Bytes
arithmetic intensity =

0

100

200
FP16

intensity

0
200
400
600FP16

intensity

Higher resolution
→ higher AI

Larger batch size
→ higher AI

Linear layers of Resnet-50

• Variable across:

• Neural networks as a whole

• Layers within a single network

• Deployment scenarios

Comparing intensity and CMR for neural networks on GPUs

23

arithmetic
intensity

CMR: compute-to-
memory-bandwidth ratio

vs.

• Variable across:

• Neural networks as a whole

• Layers within a single network

• Deployment scenarios

• Trends in neural architecture
design reduce intensity

Large DNNs:
High intensity

Small DNNs:
Low intensity

Techniques that improve throughput/latency,
but reduce arithmetic intensity:

- Pruning

- Model specialization

- Model scaling (e.g., EfficientNets)

Comparing intensity and CMR for neural networks on GPUs

24

arithmetic
intensity

CMR: compute-to-
memory-bandwidth ratio

vs.

• Variable across:

• Neural networks as a whole

• Layers within a single network

• Deployment scenarios

• Trends in neural architecture
design decrease intensity

• Increasing with inference-
optimized GPUs

• Tensor Cores cause large
increase in compute bandwidth

• Memory bandwidth has not
increased as rapidly

FP16
CMR

P4 T4

58

203
Server-grade

GPUs

FLOPs/sec

Bytes/sec
CMR =

INT8
CMR

TX2 AGX

104

235

Edge GPUs

Comparing intensity and CMR for neural networks on GPUs

25

arithmetic
intensity

CMR: compute-to-
memory-bandwidth ratio

vs.

• Variable across:

• Neural networks as a whole

• Layers within a single network

• Deployment scenarios

• Trends in neural architecture
design decrease intensity

• Increasing with inference-
optimized GPUs

• Tensor Cores cause large
increase in compute bandwidth

• Memory bandwidth has not
increased as rapidly

Implication: neural network inference is likely to contain both compute-
bound and memory-bandwidth-bound layers.

Any one-size-fits all approach to fault detection will be inefficient.

Our approach: arithmetic-intensity-guided ABFT

Key idea: adapt the type of fault detection used depending on
bottleneck of layer

• Compute-bound layers: global ABFT

• Bandwidth-bound layers: ???

• We investigate and propose:
• Thread-level ABFT: approach to ABFT for bandwidth-bound layers

• Arithmetic-intensity-guided ABFT: adaptive approach to ABFT that selects
between global and thread-level ABFT

26

Fault detection for bandwidth-bound layers

Design principle: avoid additional memory accesses whenever
possible, even at the expense of additional computation

• Avoids competing with original layer for bottleneck resource: bandwidth

• Global ABFT requires additional loads/stores for inter-thread communication

Opportunity: compute units will stall in bandwidth-bound layers
• Ideal approach will fill these stalls with fault detection

27

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

28

Thread

matrix A

Thread

matrix

B

Thread

matrix

C

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

29

outer

product

ABFT for bandwidth-bound linear layers

30

outer

product

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

31

outer

product

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

32

outer

product

sum

sum

x+=
column

checksum

row

checksum

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

33

outer

product

sum

column

checksum

sum

row

checksum

x+=

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

34

outer

product

sum

column

checksum

sum

row

checksum

x+=

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

ABFT for bandwidth-bound linear layers

35

==

sum

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

• Thread-level ABFT:
• Each GPU thread performs thread-local

ABFT alongside original mat. mult.

• Avoids additional loads/stores

• Adds more redundant operations, but
exploits compute stalls in mat. mult.

ABFT for bandwidth-bound linear layers

36

outer

product

sum

column

checksum

sum

row

checksum

x+=

Further exploiting underutilized computational bandwidth

37

Two-Sided Thread-Level ABFT

sum

column

checksum

sum

row

checksum

x+=

Nt

Mt

sum

row

checksum

x+=

Nt

Mt

One-Sided Thread-Level ABFT

Arithmetic-intensity-guided ABFT

Key idea: adapt the type of fault detection used depending on
bottleneck of layer

• Compute-bound layers: global ABFT

• Bandwidth-bound layers: thread-level ABFT

• Before deployment, for each linear layer:
• Select fastest among global ABFT and thread-level ABFT

• Choice typically aligns with intensity of layer and CMR of GPU

• More design decisions in the paper

38

Evaluation setup

• Implemented in NVIDIA CUTLASS linear algebra library

• Run on T4 GPU, using Tensor Cores (FP16)

• Variety of neural network workloads
• Popular CNNs

• CNNs developed through model specialization

• NNs in recommendation models (DLRMs)

• Detailed evaluation in paper:
• Various batch sizes

• Various image resolutions

• Evaluation of design decisions in thread-level ABFT

39

Results: high-intensity neural networks

40increasing intensity

Global ABFT Arithmetic-Intensity-Guided ABFT

Results: high-intensity neural networks

41

Global ABFT Arithmetic-Intensity-Guided ABFT

1.1x – 2.8x reduction in overhead

increasing intensity

Results: low-intensity neural networks

42

Recommendation models Specialized CNNs

3.2x – 4.6x speedup 1.6x – 5.3x speedup

Global ABFT Arithmetic-Intensity-Guided ABFT

Summary of arithmetic-intensity-guided ABFT

• Analyze trends in neural network design and GPU hardware

• Made case for prevalence of bandwidth-bound linear layers
• Prior approaches to ABFT are not well suited for these

• Propose arithmetic-intensity-guided ABFT:
• Investigate approaches to ABFT for bandwidth-bound layers

• Tailor the ABFT scheme used to the intensity of the layer, CMR of GPU

• Enables 1.1x – 5.3x reduction in execution-time overhead

Code: github.com/thesys-lab/arithmetic-intensity-guided-abft

Contact: jkosaian@cs.cmu.edu, rvinayak@cs.cmu.edu

43

