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ABSTRACT

Social live video streaming (SLVS) applications are becoming in-

creasingly popular with the rise of platforms such as Facebook-

Live, YouTube-Live, Twitch and Periscope. A key characteristic that

differentiates this new class of applications from traditional live

streaming is that these live streams are watched by viewers at dif-

ferent delays; while some viewers watch a live stream in real-time,

others view the content in a time-shifted manner at different delays.

In the presence of variability in the upload bandwidth, which is

typical in mobile environments, existing solutions silo viewers into

either receiving low latency video at a lower quality or a higher

quality video with a significant delay penalty, without accounting

for the presence of diverse time-shifted viewers.

In this paper, we present Vantage, a live-streaming upload so-

lution that improves the overall quality of experience for diverse

time-shifted viewers by using selective quality-enhancing retrans-

missions in addition to real-time frames, optimizing the encoding

schedules to balance the allocation of the available bandwidth be-

tween the two. Our evaluation using real-world mobile network

traces shows that Vantage can provide high quality simultaneously

for both low-latency and delayed viewing.

For delayed viewing, Vantage achieves an average improvement

of 19.9% over real-time optimized video streaming techniques across

all the network traces and test videos, with observed gains of up to

42.9%. These benefits come at the cost of an average drop in real-

time quality of 3.3%, with a maximum drop of 7.1%. This represents

a significant performance improvement over current techniques

used for SLVS applications, which primarily optimize the video

upload for real-time viewing.
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1 INTRODUCTION

Mobile live video traffic has grown significantly over the last

decade [14]. This growth has been propelled by improvements

in mobile camera technology, computing power, and wireless tech-

nology, which enables the capture, encoding, and transmission

of high-quality video in real-time from mobile devices. Applica-

tions for video-conferencing and live broadcasting have become

ubiquitous on mobile devices today. Social live video streaming

(SLVS) applications like Facebook Live [1], YouTube Live [11], and

Periscope [7], are a new and increasingly popular class of applica-

tions that bring the power of live streaming to individuals.

A unique feature that differentiates SLVS platforms from tradi-

tional live video applications is the ability to view real-time, time-

shifted, and archival versions of a single stream. SLVS applications

enable viewers to interact with broadcasters via comments and

reactions in real-time [40, 41], and also archive the video to enable

viewing after the live streaming session has ended. Furthermore,

platforms like Hangouts-on-air [2] and Facebook Live [4] allowmul-

tiple users to broadcast simultaneously on a single live-stream. For

viewers using interactive features such as real-time comments, as

well as broadcasters taking part in collaborative broadcasting [2, 4],

it is critical to deliver the video stream at a low-latency, whereas a

higher streaming latency is acceptable for the other viewers.

In contrast, traditional live video streaming applications target

a single viewing delay. In video conferencing applications, par-

ticipants require low-latency for interactivity, while viewers of a

broadcast event can typically tolerate tens of seconds of delay. Ex-

isting approaches for handling network bandwidth variations are

tailored for one particular viewing delay. In low-latency applications

like videoconferencing, video bitrate is chosen to closely follow the

available bandwidth in order to ensure that frames are received

before their real-time playback deadline, at the expense of lower

quality during periods of low bandwidth. On the other hand, when

higher delays are acceptable, applications use buffers to absorb

network variations and the video bitrate is chosen to match the av-

erage bandwidth. This results in higher video quality and smoother

playback at the cost of higher latency.
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Due to lack of better alternatives, current SLVS platforms make

the same tradeoffs between latency and quality as traditional live

streaming, despite the diversity of viewing delays. Operating at a

single point on the latency-quality tradeoff spectrum is inadequate

for providing high quality-of-experience (QoE) for all the viewers

of SLVS streams. The problem is further exasperated by the fact

that SLVS streams are commonly initiated from mobile devices,

which have particularly unpredictable network behavior [44].

In this paper, we present Vantage, a live video upload solution

explicitly designed to address the time-shifted viewing characteris-

tic of SLVS in the face of bandwidth variations. Vantage exploits

the variability of the upload path to it’s advantage: periods with

high bandwidth can be used to correct for a loss in quality due to

previous periods of network impairment. Vantage optimizes the

video upload process across different time-shifted viewing delays

by using quality-enhancing retransmissions in conjunction with a

low-latency video stream. Vantage formulates bitrate selection and

transport scheduling as a joint optimization problem that maxi-

mizes the video quality across the diverse viewing delays.

Several challenges need to be addressed to make the use of

quality-enhancing retransmissions practical and effective: (1) allo-

cating bandwidth and scheduling transmissions for the real-time

and retransmitted frames such that the QoE is optimized for all

users, (2) handling the computational overheads and latencies asso-

ciated with complex optimization decisions and video compression,

and (3) dealing with the network unpredictability and its impact on

scheduling decisions. Vantage incorporates several system design

choices like approximations, pipelining, and fallbackmechanisms to

handle the challenges related to optimization and unpredictability.

We have implemented Vantage and evaluated it on a wide vari-

ety of mobile network traces [31] and videos [10]. Our evaluation

shows that Vantage achieves high quality for low-latency and time-

shifted viewing simultaneously. Specifically, for delayed viewing,

Vantage achieves an average improvement of 19.9% over real-time

optimized streaming techniques across all the network traces and

test videos, with observed gains of up to 42.9%. The quality achieved

by Vantage for delayed viewing is within 7.7% on average of the

maximum quality achievable by delay tolerant techniques. These

benefits come at the cost of an average drop 3.3% in the real-time

quality, with a maximum drop of 7.1%. These results demonstrate

the significant performance benefits of using Vantage over current

techniques used for SLVS applications, which primarily optimize

the video upload for real-time viewing.

2 BACKGROUND AND OPPORTUNITY

In this section, we discuss SLVS architectures and the network

variability observed on mobile upload paths used in SLVS.

2.1 SLVS Architectures

We describe common designs and practices employed by four of

the most widely used SLVS platforms as of 2019: Facebook Live,

YouTube Live, Twitch, and Periscope. Our descriptions are informed

by recent studies [40] and industry engineering material [12, 36].

Live video is captured and encoded by a broadcaster’s device

(e.g., a mobile phone) and uploaded via RTMP [8] or WebRTC [9]

to an ingestion point (a point-of-presence or a data center server),

where the upload path connection is terminated. We refer to this

ingestion point as the upload endpoint. The video is then re-encoded

at various bitrates and handed off to a content delivery network,

which delivers the video to viewers using a variety of techniques

that have been widely studied in the past [23, 24, 30]. This paper

focuses on improvements for the upload path of SLVS applications.

2.2 Time-shifted viewing in SLVS

SLVS differs from traditional live-streaming in that it enables

viewing of the same video stream at different delays. Traditional

live streaming applications are tailored either for interactive, low-

latency streaming (e.g., Skype and Hangouts) or for high quality

viewing at larger delays (e.g., ESPN and CNN). On the other hand,

SLVS platforms enable both real-time and delayed viewing of the

same stream. We term this characteristic “time-shifted viewing.”

Time-shifted viewing takes a number of forms within an SLVS

stream. Some viewers interact with broadcasters via comments

and reactions, and thus require real-time latencies [40, 41]. SLVS

platforms also archive video streams to allow for viewing after

the live stream has ended, and also allow viewers to seek back to

older segments during the live stream and watch the video with a

time-shifted delay. Moreover, collaborative broadcasting platforms

like Hangouts-on-air [2] and Facebook Live [4] allow collaborative

streaming where the co-broadcasters have stronger low latency

requirements compared to the viewers.

In summary, SLVS streams have audiences with a wide variety of

viewing delays, and thus have varying degrees of latency tolerance.

This presents a new and important dimension for improving the

quality of experience of SLVS platforms.

2.3 Variability in the upload path

Many SLVS broadcasts are initiated from mobile devices over cel-

lular networks like LTE, which experience frequent bandwidth

fluctuations [44]. This forces the broadcaster’s device to either

adapt the bitrate of encoded video (i.e., alter quality), or use large

sender side buffers (i.e., alter the delay of transmission).

To illustrate the variability of bandwidth in mobile uplinks, we

analyzed the network traces from theMahimahi [31] project. Across

the eight upload traces, we made the following observations:

(1) Periods of low/high bandwidth are common: 17.1% and

17.4% of the time, upload bandwidth is 50% or less and 150% or

more than the average for a particular trace, respectively.

(2) Periods of low/high bandwidth are short-lived: Periods

with less than 50% and more than 150% of the average band-

width last, on average, 789 ms and 809 ms, respectively.

(3) More bandwidth is gained during high periods than is

lost during low periods: In five out of the eight traces, we

find that there is at least 1.25× additional bandwidth when the

bandwidth is above 150% of the average than the amount lost

when bandwidth drops below 50% of the average.

These observations suggest that periods of high bandwidth can

be exploited to improve the quality of frames that were previously

affected by periods of low bandwidth. In the next section, we show

how an SLVS upload solution can make use of these properties to

improve the QoE for all time-shifted viewers.
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2c. The dark green region in the middle plot (labeled “Real-Time”)

represents the real-time video quality. The dark blue region in the

bottom plot (labeled “10 second delay”) shows the improvement in

video quality for delayed viewing over the real-time video quality

(shown in light green for reference). Figure 2d shows the average

quality for time-shifted viewing between t = 0 s (i.e., real-time)

and t = 12 s for video uploaded by real-time optimized, delay-

optimized, and time-shift-aware upload strategies. Compared to

real-time optimized streaming, using Vantage improves the SSIM

for delayed viewing by 9.4%, while causing a drop of only 5.2%

in the SSIM of the real-time stream. Note that the drop in SSIM

only occurs for the high-quality frames, which still results in good

real-time quality as opposed to delay-optimized streaming, where

real-time viewing is not feasible. We note here that although we

plot the average SSIM in this case to demonstrate the benefits of

time-shift optimized streaming, for our evaluation, we use a unified

metric (described in Section 5.1.1) that combines the SSIM of the

video frames and the stalling events into a single metric.

Thus, by making use of quality-enhancing retransmissions and

allocating bandwidth between diverse time-shifted viewing delays,

a SLVS upload solution can deliver high QoE to viewers across a

spectrum of viewing delays.

3.2.3 Key challenges. While the idea of sending quality-

enhancing retransmissions by exploiting periods of high bandwidth

during the live streaming session is simple and promising, there

are several critical challenges in designing a live streaming upload

solution based on this idea.

Optimal, efficient bandwidth allocation in real time. As

described in Section 3.2, allocating bandwidth between real-time

frames and quality-enhancing retransmissions can be formulated

and solved as an optimization problem. However, finding an op-

timal solution to this problem may take a non-trivial amount of

time, making it challenging to design an optimization-based system

involving real-time streaming.

Bitrate-SSIM curve estimation. The bitrate-SSIM curves of

frames inform the allocation of bandwidth between real-time frames

and quality-enhancing retransmissions. However, the bitrate-SSIM

curve of a video frame is not available before the frame is encoded,

and thus must be estimated for performing bandwidth allocation.

Estimating bitrate-SSIM curves is challenging as they depend on a

variety of properties of each frame and the preceding frames.

Mitigating error in bandwidth estimation. Allocating band-

width between real-time frames and quality-enhancing retrans-

missions requires having an estimate of the future bandwidth. Ac-

curately estimating future bandwidth is challenging in its own

right, and thus a system allocating bandwidth between real-time

frames and quality-enhancing retransmissions must be robust in

it’s abilities to adapt to inaccuracies in bandwidth estimation.

In sections 5.2.7 and 5.2.6, we show that addressing these chal-

lenges are critical for improving the QoE across all viewers for

time-shifted viewing of live video streams.

4 DESIGN OF VANTAGE

In this section, we describe the design of Vantage and how Vantage

overcomes the challenges outlined in Section 3.2.3 in order to deliver

high QoE to diverse time-shifted viewers.
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Figure 3: Vantage’s architecture. Solid lines indicate data-

plane components. Dotted lines indicate control-plane com-

ponents. Components that are unchanged by Vantage are

shown in a darker shade.

4.1 Overview

We first describe the architectures of current live video upload

systems, and then describe Vantage’s high-level operation.

4.1.1 Current live video upload systems. In current live

video upload systems, the uploading client first captures raw video

frames from the camera on a mobile device. Frames are then com-

pressed by an encoder and transmitted to the upload endpoint. The

system’s network transport mechanism estimates the available up-

load bandwidth, which informs the level of compression used for

encoding the video frames.

4.1.2 Architecture of Vantage. Figure 3 depicts Vantage’s

high-level architecture. Vantage modifies the upload architecture

described in Section 4.1.1 to enable support for quality-enhancing

retransmissions. Raw frames from the camera are encoded and

enqueued for real-time transmission. Vantage simultaneously com-

presses these frames at a high quality and places them in memory

for potential quality-enhancing retransmissions in the future. Van-

tage’s scheduler generates a bandwidth allocation schedule for the

new frames captured by the camera as well as for quality-enhancing

retransmissions. The execution engine coordinates the encoding of

scheduled frames, and adjusts for inaccuracies in the allocation de-

termined by the scheduler (discussed in detail below in Section 4.3).

Frames that have been scheduled for transmission are enqueued

for transmission by a generic transport protocol that is unmodified

by Vantage. We assume that the transport layer provides network

bandwidth estimates and drains packets from Vantage’s queues.

In the remainder of this section, we describe each of Vantage’s

components in detail as well as how Vantage overcomes the chal-

lenges presented in Section 3.2.3.

4.2 Scheduler design

Vantage’s scheduler takes as input a set of real-time frames and

potential candidate frames for retransmissions, and an estimate

of the upload bandwidth in the near future in order to choose (a)

which frames to schedule for transmission and (b) the bitrate each

scheduled frame should be encoded at.
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We formulate schedule generation as a mixed-integer optimiza-

tion problem that generates a transmission schedule that optimizes

the quality for the viewers across time-shifted delays. The pre-

cise formulation of the optimization problem is described in Sec-

tion 4.2.1.

An important consideration with this approach is that the time

taken to solve a mixed-integer problem may be non-trivial and

highly variable. To address this, Vantage’s scheduler is run every

P seconds and generates schedules for the next P seconds. When

the scheduler is run at time T = t , it receives a snapshot of the

state (i.e., candidate frames and bandwidth estimation) at time t ,

and generates a schedule for the period between T = t + P and

T = t + 2P . If the optimization takes longer than P seconds, the

scheduler is interrupted and the current, potentially sub-optimal

solution of the optimization is used as the schedule.

4.2.1 Optimization formulation. Next, we discuss the for-

mulation of the optimization problem that is performed by the

scheduler every P seconds. Consider a single optimization iteration

that starts at time T = t . We first list the inputs to the optimizer

and then subsequently discuss how these inputs are obtained. The

optimizer takes the following information as inputs:

• An estimate of the number of bytes B that can be transmitted

between T = t + P and T = t + 2P .

• A set of future real-time frame ids (F ) that will be sent between

T = t + P and T = t + 2P .

• A set of past frame IDs (G) that are to be considered for re-

transmission. A retransmission chosen in this iteration would

happen at some time between T = t + P and T = t + 2P . The

difference between T = t + 2P and the time at which a frame д

was captured is the delay of the frame, which we denote as dд .

• The quality of past frames that have been received by the upload

endpoint. For each frame д ∈ G, Rд denotes the SSIM of the

version of frameд currently available at the upload endpoint.We

do not schedule queued or in-flight frames for retransmission.

• The bitrate-SSIM curve for each frame д ∈G. For each frame

д ∈ G, Qд : size → ssim represents the mapping from encoded

frame size (in bytes) to the SSIM.

• The predicted bitrate-SSIM curves for each of the real-time

frames that will be sent between T = t + P and T = t + 2P . We

denote this by Qf : size → ssim.

• The distribution of the viewing delays of the current set of

viewers. For each viewing delay d , N(d) represents the count

of viewers watching the live stream at a viewing delay of d

seconds.

• We also define a set of weightswд ∀д∈G and aweightw0 for the

real-time frames. We discuss how these weights are computed

from the delay distribution N in the subsequent paragraphs.

The scheduler returns the target sizes sf ∀f ∈ F for the real-

time frames and a set of frames G ′ ⊂ G and the corresponding

target size sд ∀д ∈G ′ for the quality-enhancing retransmissions.

We formulate the optimization problem as a maximization of the

weighted viewing quality subject to bandwidth constraints.

The role of the bandwidth constraint is to ensure that the total

amount of data scheduled for transmission (including both the

real-time frames and past frames) does not exceed the estimated

bandwidth. Thus, the bandwidth constraint is :∑

∀f ∈F

sf +
∑

∀д∈G

sд ≤ B (1)

The objective function includes contributions from the real-time

frames and the past frames. For a real-time frame f ∈ F , the contri-

bution to the objective function is

w0 · Qf (sf ) (2)

For a past frame д ∈ G , the contribution to the objective function is

wд ·max(Qд(sд),Rд) (3)

Note that the weightswд are different for each frame д ∈ G.

The net objective sums up the contribution from each of the

real-time frames and the past frames:

obj =
∑

∀f ∈F

w0 · Qf (sf ) +
∑

∀д∈G

wд ·max(Qд(sд),Rд) (4)

Since the real-time frames serve as a base for delayed playback

as well, the transmission of a real-time frame benefits all delays.

Similarly, a quality-enhancing retransmissions at a delay d is useful

for all viewing delays that are greater than d . Thus, we set the

weights for the real-time frames (w0) and the past frames (wд ) in

the objective function as follows.

w0 =

∑

d

N(d),wд =

∑

d>dд

N(d) (5)

The functions Qi that maps size to SSIM for a frame i is typically

a non-linear curve (e.g., Figure 1) and can vary significantly across

frames. We approximate these curves as piece-wise linear functions

in the formulation of the mixed-integer program. Since the number

of frames that can be encoded in P seconds is limited, we addition-

ally limit the number of retransmissions to |F |. This ensures that

the computational requirements of encoding the quality-enhancing

retransmissions does not exceed that of the real-time frames.

4.2.2 Bitrate-SSIM curve estimation. Recall from Sec-

tion 4.2.1 that the optimization problem uses bitrate-SSIM curves

of all frames that are candidates for scheduling (i.e., Qд for retrans-

missions and Qf for real-time frames). This is required so that

the optimization can make informed choices when reducing the

real-time quality to improve the quality of past frames.

Vantage uses a regression heuristic to estimate these curves

from previous encoding data. We use a function of the form Q(s) =

1 − 1
a ·s+b

since it captures the concave non-decreasing behavior

(for a > 0, s > −b
a ) typical of bitrate-SSIM curves (e.g., Figure 1).

Parameters a and b are computed separately for each frame based

on its observed size and SSIM when the frame has already been

previously encoded (i.e., for real-time or for quality-enhancing

retransmissions). These parameters are updated each time a frame is

re-encoded for retransmission. However, bitrate-SSIM information

is not available for future real-time frames because they have not

yet been captured. Hence, for the future frames, we use the EWMA

values of the past parameters for computing the parameters of

Qf ∀f ∈ F because frames that are temporally local have similar

content, and thus similar bitrate-SSIM curves.
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4.2.3 Optimizer performance. A preliminary evaluation of

Vantage with a scheduling period P = 2 s indicated that the mixed-

integer solver often fails in finding an optimal solution within

2 seconds when |G | is large. One alternative is to increase the

scheduler period P , but this results in worse performance due to

the scheduler receiving stale bandwidth estimates. This is further

discussed in Section 5.2.5. Instead, Vantage filtersG using a heuristic

and only generates the variables in the mixed-integer program

for the 200 frames with the worst SSIM. Furthermore, we do not

restrict the frame sizes to be integers, and instead use an integer

approximation for the continuous solution. We find that using P =

2 seconds along with these approximations leads to the optimizer

generating high-quality schedules: 98.5% of optimization windows

in our evaluation result in a schedule that is within 1% of the optimal

solution.

4.3 Mitigating bandwidth estimation error

As described in Section 4.2, Vantage’s scheduler generates an en-

coding and transmission schedule for P seconds in the future based

on an estimate of the future network bandwidth.

Since the optimizer uses a bandwidth estimate measured P sec-

onds before the scheduled frames are transmitted, the true available

bandwidth may differ at the time when the scheduled frames will

be transmitted. Left uncorrected, the use of a schedule generated

from a mispredicted bandwidth estimate will lead to sub-optimal

use of the network.

To mitigate the effects of bandwidth misestimation, Vantage’s

execution engine makes adjustments to the generated schedule

prior to transmitting the frames. When the bandwidth estimate

used to generate the schedule under-estimated the amount of band-

width available at transmission time, Vantage’s execution engine

keeps the network saturated by increasing the bitrate of the real-

time video compared to the optimizer’s schedule, but only if the

retransmissions scheduled in that iteration have been completed.

On the other hand, when the bandwidth estimate used to gener-

ate the schedule over-estimated the amount of bandwidth available

at transmission time, the execution engine prioritizes transmission

of real-time frames: frames scheduled for retransmission at that

time are discarded and real-time frames are encoded at a bitrate

lower than that specified by the scheduler so as to avoid over-

saturating the network. Prioritizing real-time transmission in the

event of bandwidth over-estimation ensures high QoE for all time-

shifted viewing delays, as real-time frames would be available for

viewing at all delays, whereas retransmitted frames only benefit

viewers watching with a time-shifted delay.

4.4 Encoding retransmissions

Frames that have been scheduled for retransmission at a particular

time may not be temporally close to the real-time frames scheduled

at the same point in time. This presents a challenge for encoding

Vantage’s output stream because video encoding algorithms rely

heavily on the similarity between successive frames to achieve good

compression ratios. Using the same encoder for transmitting both

the real-time video and the retransmissions would result in poor

compression, as the content in the retransmitted frames may differ

significantly from real-time frames.

To address this challenge, Vantage uses two separate encoders for

compressing real-time and retransmitted frames. Real-time frames

are encoded in the order in which they were captured. Quality-

enhancing retransmissions are encoded by a separate encoder based

on the schedule determined by the optimizer. Though retransmis-

sions could be temporally far from one another, we note that net-

work impairment events commonly affect groups of neighboring

frames. Thus, if a particular frame is a good candidate for retrans-

mission, it is more likely that its neighboring frames are also good

candidates for retransmission. We, therefore, add an additional

regularization objective to the optimization formulation to favor

scheduling consecutive sequences of frames among the retransmis-

sion candidates for quality-enhancing retransmissions.

4.5 Reducing memory overhead

Vantage keeps previously transmitted frames in memory so that

they can be re-encoded as quality-enhancing retransmissions at

a later time. Naïvely storing raw video frames in memory is im-

practical for uploads initiated from a mobile device; the size of a

raw frame can be as large as 1.5 MB, thus requiring more than a

gigabyte of memory for 30 seconds of video.

To address the high cost of storing raw video frames, Vantage

compresses raw frames as lossless I-frames using a tertiary encoder

prior to storing in memory. This allows Vantage to maintain a low

memory footprint, but incurs additional computational cost. We

believe that this is an appropriate trade-off as hardware accelerated

encoding and decoding solutions are commonly available today,

though we note that this design choice is not required by Vantage’s

framework.

4.6 Discussion

In this section, we briefly discuss required changes to the upload

endpoint to support Vantage and how Vantage would differ with

the availability of an SVC codec.

Upload endpoint modifications. Recall from Section 2.1 that

an SLVS upload stream is terminated at an upload endpoint, which

decodes the stream and re-encodes it into small video segments

for efficient delivery to the viewers over content delivery networks

(CDNs) [40].

While the changes proposed in Vantage allow backward compat-

ibility with real-time streaming systems, the upload endpoint must

be able to handle Vantage’s quality-enhancing retransmissions. This

requires the upload endpoint to re-transcode past video segments

whenever quality-enhancing retransmissions for that segment are

received, and to disseminate these higher quality video segments

to the CDN. As described in Section 4.4, Vantage’s scheduler pe-

nalizes retransmissions that are spread apart, which helps limit the

rate at which past video segments need to be updated. Requiring

only these minor changes to the upload endpoint makes Vantage

well-suited for current SLVS architectures.

Scalable video coding. Vantage’s approach of sending quality-

enhancing retransmissions bears similarity to the enhancement

layers used in scalable video coding (SVC) techniques. Indeed, Van-

tage’s design could be simplified by using an SVC codec, since

the video would only need to be encoded once, and storage of
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high-quality frames would not be necessary. Despite these bene-

fits, we have chosen not to design Vantage specifically for SVC

codecs because (1) SVC codecs are not widely adopted, limiting

hardware-accelerated encoding support, and (2) while simple SVC

schemes with coarse grained scalability do not have significant

overhead, fine grained SVC schemes have poor compression effi-

ciency and are significantly more compute intensive compared to

non-layered codecs.

Even in the absence of the aforementioned downsides of SVC,

the use of SVC alone cannot overcome the challenges involved with

optimizing the video upload for multiple time-shifted delays. An

SVC based live video upload mechanism would still need to make

bandwidth allocation decisions between the real-time base video

stream and the enhancement streams, and also choose which frames

to retransmit. While the ability to encode the video only once and

not having to store high quality frames is an advantage of using

SVC, the use of non-layered codecs is better in some situations.

When retransmitting a sequence of contiguous frames, encoding

a P-frame with a high quality past frame as the reference is often

more efficient than encoding the frame with a low quality version

of itself as the reference frame.

While SVC provides some clear benefits, we believe compati-

bility with standardized codecs and hardware is more important

for adoption in the real world today. We would only need to make

minor tweaks to the optimization formulation used in Vantage’s

scheduler for generating optimized schedules for SVC codecs.

Overhead of two encoders. Vantage’s approach of using

two separate encoders to compress real-time frames and quality-

enhancing retransmissions is computationally expensive. We be-

lieve this overhead is well-justified: Vantage gains significant im-

provements in the QoE across multiple viewing delays for SLVS

applications, and the trend of increasing hardware acceleration

support further justifies this tradeoff.

4.7 Implementation details

We have implemented Vantage in C++, with the scheduler using the

Gurobi [19] library to solve the optimization problem. To reduce

computational requirements, we limit Gurobi to run on a single core

and the execution engine to run on a single thread. Vantage uses

the VP8 encoder from Salsify [18] because it provides a convenient

API for controlling the size of each frame. For performance reasons,

Vantage compresses the high-quality frames and encodes real-time

frames and the quality-enhancing retransmissions in parallel.

5 EVALUATION

We evaluate Vantage and compare its performance to conventional

live video upload techniques for SLVS applications.

5.1 Methodology

5.1.1 Metrics. Vantage is designed to improve the quality of

video playback across the various time-shifted viewing delays by

replacing low quality frames with high-quality versions and filling

in the gaps caused due to skipped frames.While Vantage’s scheduler

is designed to optimize the SSIM [42] metric, Vantage can support

other frame level reference metrics (like PSNR, etc.). We use the

SSIM metric when measuring the quality of a single frame and

use the SQI-SSIM [16] metric to compute an overall video quality

score from the SSIM values of the individual frames. Most objective

video quality metrics do not consider the effect of stalling when

calculating video quality [43]. SQI-SSIM is a unified metric that

takes into account the full reference quality of each frame and

also the duration and frequency of video stalls. SQI-SSIM uses

an exponential decay function instead of zeros to fill in the SSIM

of missing frames. Thus, shorter stalls have a smaller effect on

the overall video quality. When video playback resumes after a

stall, the SSIM of the subsequent frames are penalized according to

an exponential decay function, thus accounting for the frequency

of stalls. We note that Vantage can support other video quality

assessment metrics (such as PSNR).

5.1.2 Baselines. While there is significant prior work on opti-

mizing video streaming for the individual cases of live streaming

and VOD-style video streaming, we are not aware of any prior

research on optimizing video quality simultaneously for real-time

streaming and time-shifted viewing of the streams. Vantage is de-

signed to work with existing congestion control and video coding

systems and enhance the performance of these systems for scenar-

ios involving time-shifted viewing of live streams, and is not meant

to be a standalone end-to-end solution for SLVS video upload.

We compare Vantage to the best case performance for low latency

streaming and VOD-style streaming using an idealized model for

bandwidth estimation and congestion control:

Low latency streaming (Base-RT). Existing low latency opti-

mized streaming systems like WebRTC and Skype maintain low

latency by conservatively utilizing the network bandwidth to pre-

vent network saturation. Recent approaches like Salsify [18] utilize

the network better by matching the instantaneous network esti-

mate through tight coupling of the video encoder and the transport

protocol. Base-RT models these systems by encoding individual

video frames at a bitrate that closely follows the real-time network

estimate. This results in optimal video quality performance for low

latency streaming.

Buffered streaming (Base-Delay). The use of larger buffers at

the sender enables a streaming application to encode video at the

average network bandwidth. This is similar to conventional ABR

based video streaming solutions like HLS [3] and MPEG-DASH [5],

which split the video into small segments where each segment

is encoded at a specific bitrate. To model the characteristics of

streaming techniques that use buffers and slower rate adaptation,

we use a window of 30 seconds to compute the average bandwidth

and encode the video at this bitrate. This results in optimal video

quality for cases where a delay of 30 seconds is acceptable.

5.1.3 Evaluation setup. We evaluate Vantage with a combina-

tion of videos and network traces with different characteristics. Our

experiments were run on a machine with Intel(R) Xeon(R) proces-

sors, limiting the Gurobi [19] solver to a single core for emulating

computational limits in mobile environments. Unless otherwise

specified, we evaluate Vantage for a uniform time-shifted viewing

delay distribution for the optimization described in Section 4.2.1

and use a 2 second period for the optimizer. This choice is further

discussed in Section 5.2.5. We evaluate the effects of different dis-

tributions of the time-shifted viewing delays in Section 5.2.3. We

run the live streams for 150 seconds and ignore the data for the
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Talking Heads City Panning Animation

Trace Delay Base-RT Base-Delay Vantage Base-RT Base-Delay Vantage Base-RT Base-Delay Vantage

Verizon
LTE

Real-time 0.8885 0.5854 0.8750 0.8003 0.6479 0.7792 0.9279 0.7504 0.9225

30s delay 0.8896 0.9552 0.9438 0.8012 0.8472 0.8306 0.9290 0.9818 0.9834

(0.8890) (0.7703) (0.9094) (0.8008) (0.7475) (0.8049) (0.9284) (0.8661) (0.9529)

AT&T
LTE

Real-time 0.5638 0.2236 0.5538 0.5224 0.4008 0.4880 0.6511 0.4370 0.6648

30s delay 0.5705 0.9098 0.8155 0.5285 0.7198 0.6760 0.6576 0.9600 0.9327

(0.5672) (0.5667) (0.6846) (0.5254) (0.5603) (0.5820) (0.6543) (0.6985) (0.7987)

TMobile
UMTS

Real-time 0.4957 0.1942 0.4604 0.3371 0.0965 0.3199 0.5055 0.1390 0.4833

30s delay 0.5054 0.6774 0.5840 0.3451 0.4834 0.4011 0.5169 0.7322 0.6143

(0.5005) (0.4358) (0.5222) (0.3411) (0.2899) (0.3605) (0.5112) (0.4356) (0.5488)

Table 1: SQI-SSIM achieved by the baselines and Vantage for each combination of the videos and the network traces. In each

case, the average SQI-SSIM across delays (indicated within parentheses) is the highest for Vantage (bolded).

last 30 seconds, since the measurements for the last 30 seconds

may be affected by the early termination of the program. We repeat

videos and traces that are shorter than 150 seconds until the entire

simulation is complete.

Videos. We chose three diverse and representative videos from

the Xiph.org Test Media repository [10] for our evaluation. Appen-

dix B contains screenshots of each of these three videos. “Talking

Heads” contains four people talking in front of a static background.

This style of video is the most common among SLVS streams [37]

and is typically easier to encode. “City Panning” pans across the city

of Stockholm. This video is much harder to encode due to a higher

amount of moving content and very fine details. “Animation” is an

animated video sequence with varying degrees of motion over the

duration of the video, which makes some segments easy to encode,

while other parts are harder to encode.

Bandwidth traces. We chose a diverse set of network traces

from the Mahimahi [31] repository: a high bandwidth LTE trace, a

highly variable LTE trace, and a low bandwidth UMTS trace. We

find these traces to be representative of Vantage’s performance

across all traces in the repository.

Transport layer emulation. We use a bandwidth averaging

window of 100ms for Base-RT and the real-time stream in Vantage.

We use the average bandwidth in the past 1 second as the bandwidth

estimate to Vantage’s scheduler. For Base-Delay, we use the average

bandwidth of the previous 30 seconds. We run Vantage and the

receiver on the same machine and emulate packet transmissions

according to the provided bandwidth trace.

Many live-streaming systems use FEC [21] or packet-level re-

transmission for dealing with network losses. These techniques can

be incorporated into the network model by reducing the bandwidth

estimates provided to Vantage and using the excess bandwidth for

loss recovery mechanisms (e.g., FEC). Since we evaluate baselines

using the same model, this provides a fair comparison between

Vantage and existing techniques for live video upload.

Encoder performance. Salsify’s encoder is a software-based

VP8 encoder written in C++. Software encoders are much slower

than hardware based encoders. We observed that even with parallel

encoding of the frames, the encoder was not able to achieve a rate

of 30 FPS while encoding 1280 × 720 (HD) videos. Hence, we run

Vantage with time dilation to allow the encoder to run at 30 FPS in

virtual time, but limit the optimization to P seconds of wall clock

time. This allows us to evaluate Vantage in a manner that is agnostic

to the encoding speed of the specific encoder we chose.

Ethics. This work does not raise any ethical issues. We use test

video sequences [10] and anonymized bandwidth traces [31] that

are publicly available.

5.2 Results

The highlights of our evaluation are as follows:

• Across a variety of upload bandwidth traces and videos, Vantage

improves the SQI-SSIM for time-shifted viewing over Base-RT

by 19.9% on average (Section 5.2.1).

• Vantage simultaneously achieves high real-time quality (within

3.3% of the quality achieved by real-time optimized streaming

techniques on average) and high quality for delayed viewing

(within 7.7% of the optimal quality achievable for delayed view-

ing on average), demonstrating the effectiveness of using Van-

tage for applications that involve time-shifted viewing such as

SLVS applications (Section 5.2.1).

• Vantage is able to adapt and achieve high QoE for skews in the

distribution of viewing delays (Section 5.2.3).

• Vantage can also improve the QoE across different viewing

delays for videos with highly dynamic (i.e., harder to encode)

content, even when there are no bandwidth variations (Sec-

tion 5.2.4).

• Vantage is robust to bandwidth misestimation (Section 5.2.6).

5.2.1 Overall improvements. Table 1 contains the SQI-SSIM

of the received video at both real-time and a delay of 30 seconds for

all the traces and videos. The average SQI-SSIM over the two delays

(shown in brackets) captures how a particular upload technique

caters to both viewing delays.

We observe that in all cases, Vantage achieves significantly better

quality than Base-RT (up to 42.9%) for delayed viewing. The gains

are biggest for the AT&T-LTE network trace; this can be attributed

to the significant variations in the bandwidth. Even for the TMobile-

UMTS network trace, which has very low bandwidth and significant

periods of zero bandwidth, we observe modest improvements in

the delayed viewing quality over Base-RT. This demonstrates that

Vantage can simultaneously deliver high QoE for both real-time and

time-shifted viewing. We also find that, across all traces and videos,

Vantage (bolded entries) significantly outperforms both Base-RT

and Base-Delay in average SQI-SSIM across the viewing delays.
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for real-time frames slightly, and using the excess bandwidth for

sending the high-quality retransmissions, as shown in the band-

width usage graph in the top subplot in Figure 4c. With Vantage,

the delayed viewing quality comes very close to that of Base-Delay,

while simultaneously achieving real-time playback quality that is

comparable to Base-RT.

Improvements at fine-grained time shifts. Figure 5a plots

the SQI-SSIM of the video for each viewing delay. For real-time

viewing, Base-RT outperforms both Base-Delay and Vantage. At

viewing delays beyond 15 seconds, Base-Delay outperforms both

Base-RT and Vantage. While the performance of Base-RT and Base-

Delay is unsatisfactory for the viewing delays that they are not

optimized for, Vantage provides a smooth increase in quality as

time-shift delay increases. Vantage’s performance is competitive

simultaneously at the delays for whith the two baselines are sepa-

rately optimized for.

Figure 5b shows the number of frames of the received video that

are skipped in groups of 10 or more frames for different delays.

This quantifies the smoothness of the resulting video. Both Base-RT

and Base-Delay suffer from a large number of skipped frames for

time-shifts that they are not optimized for. In contrast, Vantage has

nearly the same number of skipped frames as the baselines at their

respective optimal delays and significantly reduces the number of

skipped frames for intermediate delays.

5.2.3 Adapting to viewer-delay distributions. An impor-

tant aspect of Vantage is the ability to optimize the video upload

process for different distributions of the viewing delays. We evalu-

ated the performance of Vantage for three different viewing delay

distributions, one skewed towards real-time viewing, one skewed

towards delayed viewing and one with uniform weights for low

latency and delayed viewing. Figure 5c shows the effect of these

weights on the quality of video at different viewing delays between

0 and 30 seconds. For low viewing delays between 0 and 10 seconds,

Vantage with a real-time skewed delay distribution achieves the

highest quality, whereas for highr viewing delays between 22 and

30 seconds, Vantage with a delay skewed distribution achieves the

highest quality. Vantage with a uniform delay distribution strikes a

balance between the two across all delays, achieving the highest

quality for viewing delays between 10 and 22 seconds. This demon-

strates that Vantage can not only support multiple time-shifted

viewing delays, but also be tuned to cater to the exact distribution

of the viewing delays for optimized QoE across the different delays.

5.2.4 �ality improvements for dynamic videos. In addi-

tion to improving QoE in the face of bandwidth variations, Vantage

can also be used to compensate for lower video quality for harder to

encode segments of a video, even when there is no bandwidth varia-

tion. Video content with varying compression difficulty is common

in video game streaming applications like Twitch, where the video

is significantly harder to encode during highly dynamic segments

compared to more static segments like in-game menus. To emulate

this setting, we run Vantage and Base-RT for the Animation video,

which is an animated sequence with highly dynamic scene content,

with a constant bandwidth of 1.5Mbps.

Base-RT causes 7 frames to be dropped. These drops not only

affect real-time viewing, but are also present during delayed view-

ing. On the other hand, Vantage drops 8 frames in real-time, but

retransmits these later during the live-stream, resulting in no lost

frames for delayed playback and a corresponding increase in the

SQI-SSIM from 0.960 (for Base-RT) to 0.963.

5.2.5 Optimizer period. We ran Vantage with different val-

ues of P ranging from 1 second to 8 seconds, and the results are

shown in Figure 6a. Choosing a large time period allows the opti-

mizer to spread the retransmissions over a longer duration, resulting

in better real-time quality, but smaller improvements for delayed

viewing since the bandwidth estimates are stale. Smaller time pe-

riods result in more accurate bandwidth estimates, but choosing

a time period that is too small results in a bigger drop in the real-

time quality and smaller improvements for delayed viewing due to

retransmissions being squeezed into shorter periods.

5.2.6 Errors in bandwidth estimation. Recall from Sec-

tion 4.3 that Vantage’s scheduler uses the average bandwidth from

the previous 1 second to schedule frame transmissions for a time

period that is 2 seconds in the future. To evaluate the effect of

bandwidth misestimation, we analyze Vantage’s performance when

given consistently erroneous bandwidth estimates on the AT&T-

LTE trace with the Talking Heads video.

Figure 6b depicts the SQI-SSIM for different time-shifted delays

when Vantage is faced with varying degrees of bandwidth estima-

tion error. Vantage in its normal operation mode (i.e., using the

average bandwidth of the past) is listed as “Past estimate (Vantage).”

We also emulate Vantage for the hypothetical scenario where it

knows the exact future bandwidth, along with a 50% underesti-

mate and a 100% overestimate from the future bandwidth (labeled

accordingly in Figure 6b).

We see that Vantage achieves only slightly lower SQI-SSIM val-

ues across times-shift delays compared to what it would achieve

with knowledge of the exact future bandwidth. Across all video-

trace combinations, we find that Vantage results in drops in quality

of at most 1.7%, 3.2%, and 2.4% for real-time, 15 second, and 30

second viewing delays, as compared to what it would achieve with

knowledge of the exact future bandwidth. This suggests that Van-

tage’s approach of using the average bandwidth from the previous

1 s is satisfactory for generating high-quality bandwidth allocation

schedules and Vantage is resilient to errors in bandwidth estimation.

Figure 6b further indicates that Vantage is highly resilient to even

large bandwidth estimation errors due to effective fallback mecha-

nisms: Vantage achieves high SQI-SSIM even when the bandwidth

is severely misestimated. The real-time video is largely unaffected

by bandwidth misestimation in the scheduler since the execution

engine adapts to rapid variations in the real-time bandwidth (de-

scribed in Section 4.3). When the generated retransmissions are

too large to be transmitted, the scheduler overwrites the sched-

ule in the next iteration. On the other hand, when the generated

retransmissions are small, they get transmitted faster and the ex-

cess bandwidth is allocated to real-time frames. We observe similar

patterns for the other two network traces. Additional graphs and

discussion are included in Appendix C.

5.2.7 Ablation studies. The use of a quality enhancing re-

transmissions to improve the video quality for higher viewing

delays can be implemented in multiple ways and it is important to

understand the additional benefits Vantage’s design provides over
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